Near-field relaxation of a quantum emitter to two-dimensional semiconductors: Surface dissipation and exciton polaritons

نویسندگان

  • Vasilios D. Karanikolas
  • Cristian A. Marocico
  • Paul R. Eastham
  • Louise Bradley
چکیده

The total spontaneous emission rate of a quantum emitter in the presence of an infinite MoS2 monolayer is enhanced by several orders of magnitude, compared to its free-space value, due to the excitation of surface exciton polariton modes and lossy modes. The spectral and distance dependence of the spontaneous emission rate are analyzed and the lossy surface wave, surface exciton polariton mode and radiative contributions are identified. The transverse magnetic and transverse electric exciton polariton modes can be excited for different emission frequencies of the quantum emitter, and their contributions to the total spontaneous emission rate are different. To calculate these different decay rates we use the non-Hermitian description of light-matter interactions, employing a Green’s tensor formalism. The distance dependence follows different trends depending on the emission energy of the quantum emitter. For the case of the lossy surface waves, the distance dependence follows a z−n, n = 2,3,4, trend. When transverse magnetic exciton polariton modes are excited, they dominate and characterize the distance dependence of the spontaneous emission rate of a quantum emitter in the presence of the MoS2 layers. The interaction between a quantum emitter and a MoS2 superlattice is investigated, and we observe a splitting of the modes supported by the superlattice. Moreover, a blueshift of the peak values of the spontaneous emission rate of a quantum emitter is observed as the number of layers is increased. The field distribution profiles, created by a quantum emitter, are used to explain this behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Condensation of semiconductor microcavity exciton polaritons.

A phase transition from a classical thermal mixed state to a quantum-mechanical pure state of exciton polaritons is observed in a GaAs multiple quantum-well microcavity from the decrease of the second-order coherence function. Supporting evidence is obtained from the observation of a nonlinear threshold behavior in the pump-intensity dependence of the emission, a polariton-like dispersion relat...

متن کامل

Angular dependence of giant Zeeman effect for semi-magnetic cavity polaritons

The observation of spin-related phenomena of microcavity polaritons has been limited due to weak Zeeman effect of non-magnetic semiconductors. We demonstrate that the incorporation of magnetic ions into quantum wells placed in a non-magnetic microcavity results in enhanced effects of magnetic field on exciton-polaritons. We show that in such a structure the Zeeman splitting of exciton-polariton...

متن کامل

Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: beyond the dipole approximation.

In this paper, we theoretically analyze the emission of guided polaritons accompanying spontaneous recombination in a semiconductor quantum dot coupled to metallic nanowire. This study is aimed to shed light on the interaction between optically excited quantum emitters and metallic nanowaveguides beyond the validity of dipole approximation. To the best of our knowledge, this is the first time t...

متن کامل

Quantum degenerate exciton-polaritons in thermal equilibrium.

We study the momentum distribution and relaxation dynamics of semiconductor microcavity polaritons by angle-resolved and time-resolved spectroscopy. Above a critical pump level, the thermalization time of polaritons at positive detunings becomes shorter than their lifetime, and the polaritons form a quantum degenerate Bose-Einstein distribution in thermal equilibrium with the lattice.

متن کامل

Towards R-Space Bose-Einstein Condensation of Photonic Crystal Exciton Polaritons

Coupled states of semiconductor quantum well (QW) excitons and photons in a two dimensional (2D) periodic lattice of microcavities are analyzed theoretically, revealing allowed bands and forbidden gaps in the energy spectrum of exciton polaritons. Photonic crystal exciton polaritons have spatially uniform excitonic constituent set by flat QWs, but exhibit periodic Bloch oscillations in the plan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016